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It is a well-known fact that not all materials possess
positive coefficient of thermal expansion. A very com-
mon example is that of ice, which experiences volu-
metric contraction as it melts. Recent reports on nega-
tive thermal expansion include (CdMnMg)Te [1], glass
fiber/polypropylene composite laminates [2], face-
centered-cubic cesium [3], zirconium molybdate and
halfnium molybdate [4], Sc2(WO4)3 [5] and ZrW2O8
[6–9]. Literature on negative thermal expansion is too
numerous to be listed (e.g. [10–16]). As such, inter-
ested readers may refer to the general reviews by Evans
et al. [17, 18] and Sleight [19]. Here, we are con-
cerned with a special class of material behavior that
exhibits anisotropic thermal expansion, with emphasis
on a combination of both positive and negative ther-
mal expansion along its principal axes—hence lead-
ing to large thermally induced shearing. In recent years
the concept of Poisson-shearing material property has
been introduced whereby prescription of out-of-plane
strain (direction-3) gives a positive and negative prin-
cipal stains in direction-1 and direction-2 respectively,
thereby leading to large shearing in the 1–2 plane [20–
23]. As an extension to these works, the present paper
replaces the out-of-plane loading with the change in
temperature as the driving force for large shearing. A
cellular microstructure with its corresponding analyt-
ical model is proposed herein which exhibits positive
and negative thermal expansions in two perpendicular
directions.

Consider a cellular microstructure shown in Fig. 1
and its idealized representative volume element (RVE),
as depicted in Fig. 2a, which consists of thermally in-
expandible rod elements (thick lines) and thermally
expandible rod elements (thin lines). The sides of the
RVE remain mutually orthogonal under thermal load-
ing such that the RVE dies not undergo a distortion
leading to repeat-cell angles departing from 90 ◦ in the
plane. However, inequal principal normal strains lead to
maximum shearing that can be observed for an element
rotated by 45 ◦ from the principal axes. We let the inex-
pandible rod be rigidly fixed at the central junction (that
is, θ3 and θ4 being constant). The assumption of rigid
rods at the central junction is highly essential to ensure
that point C in Fig. 2a remains fixed to enable RVE con-
traction with increase in temperature—hence a negative
thermal expansion—when both θ1 and θ2 are less than
π/4. The magnitude of negative thermal expansion is
greatly reduced when the central junction angles and
rods are rotatable and expandible respectively.

The mechanistic link between the RVE considered
herein and the negative Poisson’s ratio material, as
shown in Fig. 2b, is the rod subtended by an angle
θ1. A consequence of θ1 < (π/4) is negative thermal
expansion and negative Poisson’s ratio in direction x1
corresponding to Figs 2a and b respectively. However
the RVE considered herein, as shown in Fig. 2a, does
not exhibit negative Poisson’s ratio due to the existence
of rigid central rods and junction, which are essential
in ensuring negative thermal expansion.

Given the relationship between the coefficient of
thermal expansion, α, of the thermally expandible rods
and their corresponding thermal strain as

ε = α �T (1)

where �T refers to the change in temperature, then the
effective relationship for the entire RVE can be written
as

εeff = αeff �T (2)

such that the effective property is obtained by consid-
ering the geometry of the RVE and every elements con-
tained therein. The effective shear strain for the RVE as
a result of temperature change can be written in a form
analogous to Equation 2, that is

γ = β �T (3)

where β is herein defined as the coefficient of thermal
shearing. The following analysis expresses the shear
strain in terms of temperature induced geometrical al-
teration of the proposed RVE.

With reference to Equation 1, the new lengths of l1
and l2 are

l ′i = li(1 + α �T ); (i = 1, 2) (4)

with a change in environmental temperature by �T , as
depicted in Fig. 3. Taking equal projected length, we
have the new angles of θ1 and θ2 as

θ ′
i = sin−1

(
sin θi

1 + α �T

)
. (5)
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Figure 1 An idealized microstructure showing 12 representative volume
elements (RVE).

Figure 2 Geometrical properties of one RVE: (a) anisotropic thermal
expansion, and (b) negative Poisson’s ratio via re-entrant structure.

Figure 3 Changes in lengths and angles in one quarter of RVE.

This gives the displacements of points A and B as

dxi = li cos θi − li (1 + α �T )

× cos

[
sin−1

(
sin θi

1 + α �T

)]
(6)

along axes x1 and x2 respectively. Perusal to Fig. 2
shows that the half widths of the RVE are

X i = l cos θi+2 − li cos θi + li+2. (7)

such that the principal strains are

εi = dxi

X i
. (8)

Since the relationship between the inexpandible and ex-
pandible rods of lengths l and li(i = 1, 2) respectively
is

l

li
= sin θi

sin θi+2
, (9)

the coefficient of thermal shearing is therefore

β = 1

�T
(ε1 − ε2) (10)

where the principal strains for the RVE are

εi =
cos θi − (1 + α �T ) cos[sin−1((1 + α �T )−1 sin θi)]

(sin θi/ tan θi+2) − cos θi + (li+2/ li)
.

(11)

For illustration purposes, we consider a special case
whereby the criss-cross inexpandible rod element is
symmetrical about diagonal axes

θ3 = θ4 = π

4
, (12)

the extendible rod elements are of equal length

l1 = l2, (13)

the RVE is a square

X1 = X2, (14)

the angles θ1,2 = 90◦ ∓ φ such that

θ1 + θ2 = π (15)

and that the length l4 is minimized to a zero

l4 = 0. (16)

For such a geometry, the principal thermal strains and
the coefficient of thermal shearing reduce to

ε1 = −ε2 =

−cos θ2 − (1 + α�T ) cos[sin−1((1 + α�T )−1 sin θ2)]

sin θ2 − cos θ2

(17)
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Figure 4 Effect of special case RVE geometry on the thermally induced
principal strains.

Figure 5 Influence of special case RVE geometry on the thermally in-
duced shear strain.

and

β = 2

�T

[
(−1)i+1 cos θi

sin θi + (−1)i+1 cos θi

]
(18)

respectively, where i = 1 or i = 2. Plots of principal
strains (ε1, ε2) and shear strain γ = β �T versus θ1 are
furnished in Figs 4 and 5 respectively to demonstrate the
influence of microstructural geometry on the thermally
induced shear strain.

In concluding, the concept of thermal shearing coef-
ficient has been defined and an idealized RVE proposed

for analytical purposes. In the special case considered
herein, it was demonstrated that the coefficient of ther-
mal shearing is dependent on microstructural geometry
and the change in temperature, but independent from
the coefficient of thermal expansion.
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